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Counterion condensation and fluctuation-induced attraction
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We consider an overall neutral system consisting of two similarly charged plates and their oppositely
charged counterions and analyze the electrostatic interaction between the two surfaces beyond the mean-field
Poisson-Boltzmann approximation. Our physical picture is based on the fluctuation-driven counterion conden-
sation model, in which a fraction of the counterions is allowed to “condense” onto the charged plates. In
addition, an expression for the pressure is derived, which includes fluctuation contributions of the whole
system. We find that for sufficiently high surface charges, the distance at which the attraction, arising from
charge fluctuations, starts to dominate can be large compared to the Gouy-Chapmann length. We also demon-
strate that depending on the valency, the system may exhibit a first-order binding transition at short distances.
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[. INTRODUCTION additional binding arising from 2D charge fluctuations,
which dominate the system at high surface charge. In this
Correlation effects may play an important role in control- paper, we extend this condensation picture to a system of two
ling the structure and phase behavior of highly charged macsharged surfaces with their neutralizing counterions, and to
roions in solutiong1]. The macroions may be charged mem- study the electrostatic interaction between them.
branes, stiff polyelectrolytes such as DNA, or charged Previous theoretical approaches to the problem of the at-
colloidal particles. Recently, these effects have attracted taction in charged surfaces include both numerical and ana-
great deal of attention, since they may drastically alter thdytical methods that go beyond the mean-field PB theory.
standard mean-field Poisson-BoltzmafB) picture[2—6].  Gulbrandet al.[10] provided the first convincing demonstra-
For example, one surprising phenomenon is dltieaction  tion for the attraction between highly charged walls using
between two highly charged macroions, as observed in exMonte Carlo simulations. In particular, they showed that for
perimentg 7—9] and in simulationg§10—-12. This attraction divalentcounterions, the pressure between charged walls be-
is not contained in the mean-fiel®B) theory, even for an comes negative for distances less than 10 A; hence, the ex-
idealized system of two charged planar surfaces. Indeed, istence of short-ranged attraction. Subsequently, there have
has been proven that PB theory predicts only repulsion béseen a number of numerical studies based on the hypernetted
tween like-charged macroioh4&3]. chain integral equatiofil5] and the local density-functional
Very recently, another interesting effect that is not cap-theory [16], as well as analytic perturbative expansion
tured within the PB theory is predicted, namely, thearound the PB solutiofl7] that demonstrates attraction.
fluctuation-driven counterion condensatifit¥]. For a sys- More recently, motivated by the problems of DNA con-
tem consisting of a single charged surface and its oppositelglensation and membrane adhesion, two distinct approaches
charged counterions, Netz and Orlaffs] showed that a have been proposed to account for the attraction arising from
simple perturbative expansion about the mean-field PB solusorrelations[2—4]. The first approach is based on “struc-
tion breaks down for sufficiently high surface charge. Thustural” correlations first proposed by Rouzina and Bloomfield
in this limit, fluctuation and correlation corrections can be-[2]; the attraction comes from the ground state configuration
come so large that the solution to the PB equation is n®f the “condensed” counterions. This theory predicts a
longer a good approximation. To circumvent this difficulty, a strong short-ranged attraction, with the characteristic length
two-fluid model was proposed in Refl14], in which the set by the lattice constant, typically of the order of few ang-
counterions are divided intofeee and acondensedraction.  stroms. In the other approach, based on charge fluctuations,
The free counterions have the usual three-dimensi8@)  the counterion fluctuations are approximated by the 2D
mean-field spatial distribution, while trmondensedounte- Debye-Huwekel theory, which predicts a long-ranged attrac-
rions are confined to move only on the charged surface antion which scales with the interplanar distancedas. Note,
thus effectively reduce its surface charge density. The numhowever, that the mean-field PB repulsion which scales like
ber of condensed counterions is determined self-consistentlg, 2 always dominates the attraction for large distances, and
by minimizing the total free energy which includ#ectua-  thus, the range of the attraction in this picture is still short,
tion contributions. This theory predicts that if surface chargetypically of the order of 10 A(18,19. Despite the fact that
density of the plate is sufficiently high, a large fraction of some conceptual issues have been resolved concerning the
counterions is “condensed” via a phase transition, similar tocrossover of the attractions from long ranged to short ranged
the liquid-gas transition with a line of first-order phase tran-[20,21], there remain some interesting problems to be under-
sitions terminating at the critical point. Furthermore, the va-stood. In particular, some experimental observations in pla-
lence of the counterions plays a crucial role in determiningnar surface$8] and in charged colloidal suspensidi®§ as
the nature of the condensation transition. The physicawell as computer simulationgl2] provide evidence for a
mechanism leading to this counterion condensation is th&ng-ranged attraction, typically of the order of microns,
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whereas the two mechanisms mentioned above give onlfree energy of the counterions. In Sec. IV, we apply this

short-ranged attraction. In this paper, we show that thdormalism to study the interaction of similarly charged sur-

charge-fluctuation approach, together with the counteriofaces. A detailed discussion of our results is presented in
condensation mechanisf4], can induce long-ranged at- Sec. V.

tractions for sufficiently high surface charge. We note that

other mechanisms based on hydrodynamic interac{i2®k Il. COUNTERION CONDENSATION:

depletion effectd23], and an exact calculation for the 2D QUALITATIVE ARGUMENT

plasma mode]24] have been proposed recently to account
for the long-ranged attractions.

In particular, we study the interaction between two
charged surfaces separated by a distaheeith counterions
distributed both inside and outside of the gap. This boundar
condition, as opposed to all of the counterions confined be
tween the gap, is more appropriate in general, since systenr‘%?o

In this section, we recapitulate the essential physics of the
condensation transition presented in R&#]. Recall that for
a single plate of charge density(x) =eny6(z) immersed in
n aqueous solution of dielectric constantcontaining op-
gositely charged- Ze pointlike counterions of valencg on

th sides of the plate, PB theory predicts that the counterion

are not closed and often the counterions are in equilibriu stribution [25]

with a “bath” in surface forces experiments. In the spirit of 1

the “two-fluid” model proposed in Ref[14], we divide the po(2)= =5 (1
counterions into a “condensed” and a “free” fraction. The 27Z%g(|z|+N)

condensed counterions are allowed to move only on the, to zero alaebraically with haracteristic lenath
charged surfaces, while the free counterions distribute in thgecays O z€ro aigebraically a _characteristic leng

e -7 N . :
space inside and outside the gap. The surface density of tt?Tal/(Trl.anO)’ where lg=e"/ekgT~7 A. is the Bjerrum
condensed counterion, on each plate is determined by ength in water at room temperaturig, IS the Boltzmann
minimizing the total free energy, which includes fluctuation constant, ar)dT is the temperature. This Gouy-Chapm.an.
contributions. Furthermore, an expression for the fluctuatiorl1ength A defines a sheath near the charged surface within

pressure is derived, which includes fluctuation contributioné’vhICh most of the counterions are confined. Typically, it is

from the condensed and “free” counterions. and their cou-2" the order of few angstroms-for a modergte charge d.ensity
’ f ny~1/100 A"2. Note that since\ scales inversely with

plings. We find that the counterion condensation can occuf : . . . .
either by increasing surface charge density at a fixed distand® and linearly withT, at suff!C|e_ntIy_ h'g.h den3|ty or low :
or by decreasing the separation between plates. For low Sutgmpgrature, the co'unteno'n Q|str|but|on is essentially two di-
face charge, the counterion condensation proceeds contin(l€nsional. In fact, in the limiT—0, we have

ously as a function of distance with the fraction of counter- [

. . - . . ng ¢ n

ion condensed being small but finite, and the total pressure of lim f po(2)dz=lim 2= ——=—-, 2)

the system remains repulsive. T—0J ¢ 1m0 2ZNHE 2

For higher surface charges, the qualitative behavior of the
counterion condensation transition depends critically on thavhere{ is an arbitrarily small but fixed positive value af
valenceZ of the counterions. FaZ <2, the counterion con- i.e., the counterion profilp,(z) reduces to a surface density
densation proceeds continuously as a function of distance€oating the charged plane with a densityngfZ. Therefore,
However, forZ=2, the behavior of the system is qualita- according to PB theory, all of the counterions collapse onto
tively different, similar to an isolated charged pldfief]. In  the charged plane at zero temperature. However, for highly
this case, the counterion condensation occurs via a first-ordsharged surface? >\, the fluctuation corrections be-
phase transition as a function of distance. Remarkably, weome so large that the solution to the PB equation is no
find that for trivalent (Z=3) counterions, there is a wide longer valid[5]. To capture this regime in the spirit of the
range in the surface density, in which the first-order counter‘two-fluid” model [14], we divide the counterions into a
ion condensation spontaneously takes the system from a réfree” and a condensate fraction. The “free” counterions
pulsive regime to an attractive regime at short distances, rdave the usual PB 3D spatial distribution, while the “con-
sulting in a first-order binding transition. For high surfacedensed” counterions are confined to move only on the
charge, counterion condensation again proceeds continuougiparged plane, as shown in Fig. 1. The free energy per unit
even forZ=2, but with a significant number of condensed area for the condensed counterions with an average surface
counterions. Thus, in this regime, the mean-field repulsion iglensityn, can be written a$26]
substantially reduced and the long-ranged charge-fluctuation
attraction dominates the system even for large distances.  Bfzp(nc)=nc{In[n.a’]—1}
Note, however, that the mean-field repulsion will eventually 5
dominate agsl—~. We emphasize that all these features, in + lf d’q (
particular the special role of the valence, deviate significantly 2) (2m)?
from the PB mean-field predictions.

This paper is organized as follows. In Sec. Il, we brieflywhere 1=kgT, ais the molecular size of the counterions,
recapitulate qualitatively the mechanism which drives theand Ap=1/(27Z?n.) is the 2D screening length. The first
counterion condensation. In Sec. Ill, we present in detail théerm in Eq.(3) is the entropy and the second term arises from
two-fluid model and derive a general expression for the totathe 2D fluctuations. Note that the latter term is logarithmi-

1
ghp

e a @
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weak-coupling theory which becomes exact in the lifit
9) —oo. However, for high surface charge>1, where corre-
e “free” counterions lation effects becomes important, the behaviorafepends
o / crucially oné. In particular, for6< 6,~0.038,r, andr, are
- e ® 5 both consistent solutions corresponding to the two minima of
© f, and thus a first-order transition takes place wtién,)
o ° o e ° =f(7,), in which a large fraction of conterions is con-
° densed. This occurs at a particular value of the bare surface
° o o charge density such thgt=gq(6). For an estimate, we take
o O ol ° o #=0.02 (divalent counterions at room temperatuaad ob-
o © oo tain go~1.7, corresponding tar,~e/10 nm 2. However,
o A o for 6> 6. the behavior ofr is completely different; in this
o ° o regime, there imo phase transitiorand the condensation
* o occurs continuously. Thus, the condensation transition is
o ° N similar to the liquid-gas transition, which has a line of first-
) e "condensed” counterions order transitions terminating at the critical point where a
® —— second-ordetransition occurs. If one takdg~10 A, e.g.,
= z ° room temperature, ara~1 A, it follows from the definition
of @ that there is a critical value of counterion valentg
=\al(lgh;)=1.62, below which no first-order condensation
transition is possible. Therefore, divalent counterions behave

cally divergent, which may be regularized by a microscopicqua”tatively differently from monovalent counterions at
cutoff ~a, yielding BAf,p(ne)=—1/(8m\2)In(2m\pla). ~ OOM temperature. o ,
In addition, the condensate partially neutralizes the charged Clearly, t_h|s condensatilon picture may al§0.be crucial to
plane, effectively reducing its surface charge density froniNderstanding the attracgon between two similarly charged
eny to eng=en,—Zen,. Thus, motivated by PB theory, the plates, separated by a dls'FamI:eRecaII that.the total pres-
free counterions can be modeled as an ideal gas confined toSireé of this system comprises the mean-field repulsion and
slab of thickness\g=1/(7lgZng) with a 3D concentration the correlated fluctuation attractia]. The repulsion comes
of c=ng/(Z\g). The fluctuation free energy in this case Solely from the ideal gas entropy and it is proportional to
may be estimated using the 3D DebyéeHel theory:3BAf  the concentration at the midplanelly(d)=KkgTpo(0)
= —«3(127m) [27], where k2=47Z%gc is the inverse =8KgT/({g\p) for d<\g [28], where (z=47Z%5. The
square of the 3D screening length. The free energy per unftuctuation-induced attraction il(d) = — aokgT/d® for d
area of the free counterions is then approximately given by>\p, where ay~0.048[4]. Clearly, when a large fraction
of the counterions is “condensed,” the mean-field repulsion
3 K3 is greatly reduced. Therefore, the attraction arising from cor-
Bfsp(ne)~CAriinica ]_1}_1277)“' 4 related fluctuations of the “condensed” counterions can
overcome the mean-field repulsion even for large distances.
All the qualitative results, including the nature of the con-Using the estimates in the last paragraph above, we find that
densation transition, follow straightforwardly from the analy- for divalentcounterions and surface charge density of about

FIG. 1. The geometry of the problem.

sis of the total free energy(nc) =f,p(nc) +fap(nc); MiNi-  one unit charge pek ~7 nn?, the total pressure becomes
mizing f(nc)_to find the fraction of condensed counterions, gttractive at aboui~10 nm: hence a long-ranged attraction.
Ne, we obtain Of course, this estimate should be supplemented by a more

precise calculation for the system of two charged plates,

T 4 T c
In| ———|+=g(1—7)—1g In(—) =1, (5 which is done below.
(1-71)26g] 3 769
where the three dimensipnless parametgrs: the order param- IIl. COUNTERION FREE ENERGY IN THE
eterr=2n./n,, the coupling constarg=Z<lz/\, (wherex “TWO-FLUID” MODEL

is the bare Gouy-Chapmann lengthand the reduced tem-

peratured=al/Z?lg, completely determine the equilibrium  Consider an overall neutral system consisting of counte-
state of the system. It is easy to derive the asymptotic soludons and two charged surfaces separated by a distdnce
tions of the last equation corresponding to the frees1, immersed in an aqueous solution. The surface charged den-
and condensed,7,~1, state of the counterionsr;  sity on each plate isy=en,. We model the aqueous solu-
=gfexdl—ig], and r,=1—[7exp(1) Y4Ag6/7)~ V2 tion with a uniform dielectric constart This simplification
respectively. For weak couplings<1, 7, is the only con- allows us to study fluctuation and correlation effects analyti-
sistent solution. Thus, there are almost no condensed counally. In the spirit of the “two-fluid” model proposed in Ref.
terions 7<<1. This is not surprising since PB theory is a [14], we divide the counterions into a “condensed” and a
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“free” fraction. The condensed counterions are allowed todetermined by minimizing the total free energy including
move only on the charged surfaces, while the free counterifluctuation contributions. Thus, our first task is to derive an
ons distribute in the space inside and outside the gap. Thexpression for the total free energy of the system. The elec-
number of the condensed counterions, on each plate is trostatic free energy for the whole system may be written as

IBFeI:Z fdzf nic(r){ln[”ic(r)az]—l}JrJd3XP(X){|n[p(X)a3]—1}

ZZI J'd3 jd"" L(r)8(z—z;) nk(r')8(z— zj) +ZZIB . J’d3 P(X)p(x") )p(x")
[x—x'| [x—x'|

o
2,3 fdg fdg, LN 8(z—2)[ Zp(X') —ny(X’ ”—Z|de3 fdg, X) ny(x")

|x—x'| |x—x'|
n«(x)n¢(x")
_f d3x de R AN A S , (6)
[x=x']
|
where a is the molecular size of the counterionk The second ternHzp is the electrostatic free energy for

=e?/(ekgT) is the Bjerrum lengthZ is the valence of the the “free” counterions, taking into account of the presence of
counterions, and; = —d/2 andz,=d/2 are the locations of the fluctuating condensate; to within an additive constant, it
the charged surfaces. The first two terms in E).are the may be written as

two-dimensional entropy for the condensate and three-

dimensional entropy for the “free” counterions, respectively, _ 3 3

and the rest repreps}:ant the electrostatic interactior?s of co{m— BHgD_f dxp(a{In[p(a’]—1}

terions in the system. In Eq6), the condensed counterions 1

two-dimensional d_ensity on thiéh plate_is denoted by (r), + 5] d3xf d3x’ p(X)G,p(X,X" ) p(X")

the “free” counterions with 3D density by(x), and the

external fixed charges arising from the surfacesnbgx)

=ngd(z—d/2)+nys(z+d/2). Within the Gaussian fluctua- —j d3x d(x) p(X), €]
tion approximation, we assume that the 2D density of con-

densed counterions has a spatially dependent fluctuation 3,01 .

about a uniform meami(r)=n.+ oni(r), and expand Eq. Whereg(x)=Jd°x" Z""Gyp(x,x")ng(x’) is the “renormal-

(6) to second order inSni(r). Summing over all the 2D ized” external field arising from the charged plate. From Eq.
fluctuations of the condeﬁsed counterions. i.e (8), we can see that the presence of the condensate modifies

the electrostatics of the free counterions in two ways. First,
the condensate partially neutralizes the charged surfaces, ef-
ef’gHe:f DSnZ(r)Dang(r)e” Fre, fectively reducing the surface charge density frem, to
eng=e(ng—2Zn;). Second, their fluctuations renormalize
we obtain two terms in the effective free energy;=F,, the electrostatic interaction of the system; thus, instead of the
+Hap. The first termF,p is the free energy associated with usual Coulomb potential, the free counterions and the
the condensed counterions which can be written as charged surfaces interact via the interactiGnp(x,x’),
which is the inverséthe Green'’s functionof the 2D Debye-

1 . 1 . ~
BF,p=2n.{In[n,a?]— 1} A+ Eln detK,p— Eln det Huckel operatorK zp,

[-Vil, @) —v§+%2 8(z+d/2) |Gop(X,X') = Lgd(X—X'),
D =

where K p(X,Y)=[ — V2+(2\p) S . 8(z+ d/2)]8(x—y) is ©)

the 2D Debye-Hakel operator and p=1/(27wZ2%lgn,) is the

Debye screening length in two dimensions. The first term irwhere we have defined, for convenience, a reduced Bjerrum
Eq.(7) is the entropy and the second term arises from the 2ength by ¢g=47Z?lg. In Eq. (9), the second term in the
charge fluctuations. Note that although this fluctuation ternbracket takes into account the fluctuating “condensate.”
can be evaluated analytically], we write it in this abstract Hence, in the limitn,—0 or A\p—©, G,p(X,x") reduces to
form for later convenience. the usual Coulomb interactioBq(x,x’)={g/|x—X’|.
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After a Hubbard-Stratonovich transformatid@9], the  obtain an expression for the change in the free energy due to
grand canonical partition function for the “free” counterions, fluctuations of the free counterions,
characterized by the interaction energy in K8, can be

mapped onto a_functional integral representatic ¢] 1 . 1 .
=Ny Dyre~ "¢ with an action[30] BAF3p=7 IndetK3p—7 IndetKyp, (15
3
Sy, b= f d X[l P(X)[ = V2] h(X) — k2! 0+ ¢() where the second term comes from the normalization factor
Np. Note that the second term in E(L5) partially cancels

the fluctuation contributions to the free energy of the con-
E (z=dI2)[ $(x)]? (100  densed counterions in Eq7). Thus, combining Eqs(7),
* (12), and (15) together, the total free energy of the system
can be expressed as

D

where ¢(x) is the fluctuating fieldx?=e*¢g/a®, u is the
chemical potential, andV’y °=detK ,p is the normalization BF(ng)=2n.In[n;a2]— 1} A+ BFI(nR)
factor. The minimum of the action, given by

= i -Doi i 1 R 1
68/51//(x)|¢,=¢,0 0, defines the saddle-point equation for Y detK3D—§In de(—Vﬁ]. (16)

l//O(X)! 2
o 2 _ This is the main result of this paper, from which all the
= Vi) ]+ )\_DZ o(z=d/2)[i¢o(x)] equilibrium quantities can be calculated. It says that the free
. N energy of the counterions is simply a sum of the mean-field
+ k2 )T ¢ =, (11)  free energy and a fluctuation energy term. Note that the latter

term contains couplings among the fluctuations of the free
This saddle-point equation is equivalent to the PB equatiomnd the condensed counterions. Finally, we stress that the
by defining the mean-field potentiako(X)=—iyo(X)  derivation presented here is rather general and may apply to
— ¢(x), which is solved below in Sec. IV. To obtain the free other physical systems as well.
energy for the free counterions on the mean-field level, we
note that it is related to the Gibbs potentidly| ¢]

. IV. INTERACTION BETWEEN TWO SIMILARLY
=S[ Jy,¢] by a Legendre transformation,

CHARGED SURFACES

In this section, we employ the framework of counterion
condensation derived in Sec. lll to study the interaction of
two charged surfaces with free counterions and condensed
wherepg(x) is the mean-field free counterion density given counterions fluctuating on each of them. In Sec. IV A, an
by expression is derived for the total pressure, which takes into

o o)+ (%) account the total fluctuations of the counterions. In Sec.
po(X)=(x"/tg)e" : (13 IV B, we discuss the behavior of the total pressure and the
equilibrium state of the system as characterized by the frac-
tion of condensed counterionwhich is determined by the
minimum of the total free energy E{L6).

FIo(nR) =Tl $]+ 1 f d3x po(X), (12)

To capture correlation effects, we must also include fluctua;
tions of the “free” counterions, thereby treating the “free”

and “condensed” counterions on the same level. To this end,
we expand the actios] ¢, ¢] about the saddle poinfy(X) . ) )
to second order im g(x) = ¢(X) — (X)), A. Mean-field theory and fluctuation corrections

The free counterion density on the mean-field level can be

- +2] g3 3 > obtained by solving Eq.11). Defining the mean-field poten-
L. ¥1=51 ¢ ol ZJ d XJ dYAYO) Kap(xy) Ay (y) tial by @(X)=—io(X)— #(X), the saddle-point equation

N becomes
d?e(z Nkt
where the differential operator d(pz(z ) + k’e ¢ = RZ B> s(z=di2)
,\ 2 .
= —_viy 241 go(X) + d(x) 2
Kap(xy)=| = Vst 31— 2 d(zxdf2)+ ke too 2 Szxd2)e(z), (17)
D =

X 8(X—Y) (14
whereeng=e(ng—2n,) is therenormalizedsurface charge
is the second variation of the actidf ¢, ¢]. Note that the density of the plates. Note that E@.7) looks similar to the
linear term inAy(x) does not contribute to the expansion mean-field PB equation. Indeed, the solution to Ef) is
since y(x) satisfies the saddle-point equation Etfl). Per-  exactly the same as the PB solution provided that we impose
forming the Gaussian integrals in the functional integral, wethe boundary conditiop(=*d/2)=0. The solution reads
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k? cog(az) the free energy arising from fluctuations of the counterions is
¢<(D)=In—F—"5—, |z|<d/2, (18)  given by the last two terms in E¢16),
« 1 - 1 )
o-(2)=21In[1+ —(|z|-d2)|, |z=d/2, (19 BAF=5Indetksp— 5 Indet -~ Vi], (25)
V2
and the counterion density is given by where the operatorlﬁw is defined in Eq(14) with
poe #<P=(2a%/lg)se(az), |z|]=<dl2, (20 28(2)
k*e”¢D=2a”sel(az)®(2) +——————, (26
200 (|z|—d/l2+¢)
poe #>P= _—, |z|=d/2, (21
(lzl=dr2+¢) whereg=\g/(1+b?), ©(2)= 6(z+dI2)— 6(z—di2)=1, if

whereé= \2/x anda is determined from the boundary con- |2=0/2 and zero, otherwise, arfd(z)=1-0(z). The de-
ditions on the electric fieldd,e- |qo— 0,0 | qo=Nrls/Z rivative of AF with respect to distancé can be straightfor-

and o(+ d/2)=0; they lead to a transcendental equation forvardly calculated by making use of the exact identity:

a, SIndetX=TrX 16X,
algtanad/2)=1—(a\g/2)?, (22 JBAF 1
=——| d3xG3p(x,X)
wherexg=4Z/(€gng) is therenormalizedGouy-Chapmann ad 26
length. Physicallya? is proportional to the free counterion 2
density at the midplangy(0). In addition, « is related to the xi = S(z+d2)+ k2 @], (27)
zeros of the potential, i.eq(* d/2)=0, ad| Ap“=
k?=2a’? sed(ad/2)=2(1+b?)?\E, (23)  where G;p(x,x’) is the Green's function of the operators
where we have definda= a\g/2. The asymptotic behaviors Ksp satisfying
for b as determined by the relation E®2) areb~1/d as
d—o andb~1 asd—0. We note that the latter behavior is —v2y i S S(z+df2)+ k2e @ Gap(X,X")
distinct from the case of two impenetrable charged hard X N F ’
walls [25]. ,

The mean-field free energy per unit area for the free coun- = Cgd(X—=x"). (28)
terions, i.e., the first two terms in E@l6), can be easily o o o
calculated by using Eq12), An explicit derivation ofG;p(x,x") and the pressure arising

from fluctuations Eq(27) are detailed in the Appendix. The
2ng nga’ final result for the pressure can be written as
Bf0=2nc{ln[nca2]—1}+—{ln - ]

z 27Z\g , ,

an )y, 20%0 pria)=- 5 = [ S A

+ 7In[1+(a)\R/2) 1+ e (29 A od (2m)2 1-M*=(q)

2 2
where we have made used of the fact that the chemical po- — Q—W (29

tential is given byu =In(«x%a%¢g). The first two terms in Eq. AR o i(1+b2)
(24) represent the entropy per unit area of condensed and AR
free counterions, respectively. The last two terms describe
the interacting free energy for the surfaces. Using the generalhere M(q) is defined in Eq.(A14), 7, and Z; are two
formula for the pressurdly(d)=—dfy(d)/dd, we obtain  dimensionless integrals defined in the Appendix by Egs.
the mean-field pressure between the surfaddg(d)= (A30) and (A31), respectively.
+2a?/€g. We note that at the mean-field level, the pressure We note that the fluctuation pressure is purely attractive;
comes solely from the ideal gas entropy of the “free” coun- thus, fluctuations lower the free energy. Although the expres-
terions, and it is proportional to their density at the midplane sion Eq.(29) looks complicated, each term, however, has a
a standard result. However, in contrast to the standard PBimple physical interpretation. The first term in EQ9) is
theory, the pressure now depends on the order parameterthe pressure arising from counterion fluctuations near the
=Zn./ny. Thus, if there were a large fraction of condensedsurfaces. In fact, if all of the counterions are condensed,
counterionsy=1, the mean-field repulsion would be drasti- =1, we observe that(q) in Eq. (A14) becomesM(q)
cally reduced. =—e 99%(1+qgrp) and that the only contribution to the
Next, we compute the pressure arising from the counterpressure in Eq(29) is the first term, which becomes in this
ion fluctuations. Recall that the expression for the change itimit
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2 B. Equilibrium properties

d°q q
(2m)2 €291+ qrp)2—1

ﬂn(d):_f (30) The equilibrium state of the system is determined by
minimizing the total free energy with respect to the order
This expression is exactly the pressure derived in R&f. Parameter. Therefore, we need to evaluate the derivative of
arising from 2D fluctuations of the counterions. It scales likethe total free energy Eq16) with respect tor. Let us first
II(d)~ — 1/d? for large distances. consider the mean-field contribution. Explicitly differentiat-
The second term in Eq29) may be interpreted as the INg Eq.(24), we obtain

coupling between the counterions near the surfaces and those

in the bulk. This can be seen by considering the asymptotic ﬂfo: % In(2\/a) — %+ % In;
behavior of the pressure for largkin the no condensate ir  Z zZ  zZ (1-77°

limit 7=0, i.e., the fluctuation corrections to the PB pres- on

sure. In this case, in addition to the uswail® scaling law — 70 In[1+b?], (33)

arising from counterion fluctuations near the surfaces, the
second term in Eq29) contributes a term, which scales as

~d~3In(d/\) in the larged limit. Therefore, the pressure ~ Wherex=4Z/({gn,) is the “bare” Gouy-Chapman length.
To obtain the fluctuation contributions, we again make use of

1 1 the exact identity:s In detX=TrX 15X to evaluate the de-
11(d)~— RERE In(d/\) (32) rivative of the fluctuation free energy in E@®5),
contains a logarithmic term, which dominates the® term IBA F
for large distances. This term has been obtained by several =50 d*xG3p(X,X)
authors previously17,18 and, in particular, Ref.18] shows ar B
that this term arises physically from the coupling between a9l 2
counterions near the surfaces and those in the bulk. There- X—|—>, 8(z+d/2)+ kP ¢@D|. (34
fore, Eq.(29) recovers the PB limitr=0 and the 2D limit IT|Ap'=

=1 as special cases. Although the fluctuation corrections to
the PB (r=0) pressure have been considered previously, wd his expression can be explicitly evaluated using similar
stress that Eq29) is a generalization which allows for coun- techniques outlined in the Appendix and the result is given
terion condensation and may apply to other physical situaby
tions, such as ions absorption.

Combining with the mean-field pressure, we obtain the 1 9BAF 4(1—7)| 1 1+b? 2b%(1,— 1)
total pressure A ar - a2 | 2t 1at

d 1
2+)\—(1+b2)
2a? L g (1+b?)(I,—I,) R

Bllio(d)= o | T Emg (35

d

- 2
2+ )\R(1+b ) whereZ, andZ; are given in Eqs(A30) and(A31), respec-
tively, andZ, is defined by

d? M?
_f q aqM=(a) 32

(2m)2 1= M)’ Amhg
2q LO(AD =1+ L(@)], (36)

d?q

Il[d/)\R]Ej ?
The behavior of the total pressure depends on the coupling (2)
constantg=Z?lz/\ and the fraction of condensed counteri- )
ons r=Zn,/n,. Forg<1 andr<1, the fluctuation correc- Where £(q) and G(d/2) are defined by Eqs(Al8) and
tions are small and the total pressiife,(d) is controlled by ~ (A19), respectively, in the Appendix. Note tha{[d/\g] is
the mean-field repulsion. However, for-1 the mean-field '0garithmically divergen{see Appendix, Eq(A34)], as in
repulsion is greatly reduced and the fluctuation attraction caf'e case for 2D Debye-Huckel theory, which may be regu-
overcome the repulsion at finite distances. Furthermore, fo@rized by a microscopic cutoff, chosen to be the size of the
g~1 the short distance behavior is highly sensitiverto ~CcoUnteriona. Finally, using Eqs(33) and (39), the root of
Even a very small number of condensed counterions would€ frée energyF(7)/d7=0 can be determined numerically.
turn the total pressure, otherwise repulsive fer0, into  FOr €xample, the case of an isolated charged plate can be
attractive for short distances. Fge-1, the fluctuation at- OPtained by taking the limit—c in Egs. (33) and (39),

traction becomes dominant at short distances even wheffhich leads to the following transcendental equation:
there is no condensate, and the effect of finite to push the

attractive region out to a larger length scale. Hence, if there 1+In(g6/2) +In (1-7)?

is sufficient number of condensed counterions, the pressure T

is attractive even for large distances. Our next task is to

determine the fraction of condensed counterieress deter- +ngCXdX 1+2y(1+x) =0, (37)
mined by the minimum of the total free energy. 0 (A+x)[1+(y+x)(1+x)]
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FIG. 2. The fraction of condensed counteriarsZn./ng as a FIG. 3. The pressure profile for monovalemt=(0.1) and diva-

function of g=Z?lg/\ for different values ofd=a/Z?lg. Atlow |ent (9=0.02) counterions in the case of low surface chamges
surface chargg<1, the counterion distribution is well described

by.PB theory sincer<1. However, at high surface Charget COT€" the fraction of condensed counterions remains small but fi-
lation effects lead to a large fraction of condensed counterions. The. . .
e . nite. We note that generally increases as the distance of two
condensation is first order f&< 6. and continuous fo#> 6... The ; d but ins fairl tant fThi
critical point is atf,~0.017,9.~1.23, andr.~0.43. surtaces decreases, but remains tairly constan Up tnis
is not surprising since there is an entropy loss of the free
where x,=2m/(1—7)gé is the microscopic cutoff. The cou_nterlons QUe to conflner_nent._However, the pressure re-
: . - . . .mains repulsive and shows little difference from the PB pres-
analysis of this equation gives all the features mentioned in

Sec. Il. As a consistency check, it can be verified that in the''® profllg,_as exp_ected. : .
For sufficiently high couplingg~1, we have several in-

limit d—0, Eq.(35) gives the fluctuation free energy for an eresting reaimes depending on the reduced temperature
isolated charged surface but with twice of the surface charg 19 reg P 9 . Pe
see Fig. 4. For 6> 6., the counterions condensentinu-

density 2np. ously as the separatiod decreases and the pressure of the
system remains repulsive down to very short distances, as
V. RESULTS AND DISCUSSION shown in Fig. 5, where we have plotted the pressure profile

Let us first discuss the behavior of the order parameter for monovalent counterions§=0.1) for different values of
P g. Note also that there is still a repulsive barrier, which de-

at a.flxed' separatlod between the charged ;urfaces, as SUMGreases with increasing while the range of the attraction is
marized in Fig. 2. The behavior afas a functiorg at a finite

distanced is qualitatively identical to the case of infinite shifted to larger sepgraﬂons. For1.2, corresponding EO a
; ) : surface charge density of about one chargeXer300 A2,

separation. For weak couplings<1, there is a small but .
finite number of condensed counterions but the total pressurthe total pressure beco_mes attractive at ahzbuil(_) A it

. . - . Should be noted that in real experimental settings, other
remains repulsive. For sufficiently higi~1, the condensa-
tion proceeds continuously fof> 6. and via a first-order
phase transition fo#<< 6. at a particular value of the cou-
pling constantgy(d,d). We note that in this regime, the attractive ___ .—
number of counterion condensation becomes significant. g¢g
This implies that the mean-field repulsion is drastically re-
duced and the correlated attractions can overcome the repul-
sion at a finite distance. F@&~0.02, roughly corresponding 0.6
to divalent counterions at room temperature, we find that the
onset of the attraction occurs gt-1.6 or surface charge of
about one charge per 10 Arat a distancel=1.5\~40 A.
These numbers are order of magnitude consistent with com- [ ]
puter simulation$10]. 0.2 ‘/ ‘ ]

Next, we discuss counterion condensation and the total

1 T T T T 1 T

-
p—1 g
- —

repulsive
T

0.4

pressure of system as a function of distance. Note that this :
scenario is more physically relevant, since surface force ex- 0 ' ) ' 2 '
periments usually vary the distance between charged sur- ‘ “ d/A '
faces rather than changing their surface charge densities. For

low surface chargeg<1, as shown in Fig. 3, the counterion ~ FIG. 4. The fraction of condensed counterions as a function of
condensation is continuous as a function of separation angistance.
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| |
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04t R 4
P ]
L +/1 binding transition
EYTAN o g=1.3 |
D SN—— 0=0.01
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0 ] 5 s 4 5 6 7 8 0 0.2 0.4 0.6 0.8 1
d/x d/a

FIG. 5. The pressure profile for monovalent counterions in the FIG. 6. First-order binding transition: for the case of trivalent
case of moderate couplirgr-1. counterion §=0.01), the number of condensed counterion} (
exhibits a discontinuous jump at a particular distance.
strong repulsive force, such as hardcore or hydration force,

that we have not taken into account in our model, may bepinding transition occurs at abodt-10 A. We note that an
come important and may overwhelm this correlated attracmteresting consequence of this first-order binding transition
tion at length scale less than20 A [1]. This may explain s the existence of metastable states, which may have impor-
why attraction is difficult to observe experimentally for tant manifestations in surface force experiments. It is easy to
monovalentcounterions. Moreover, the pressure profile forimagine that the system can be trapped in different meta-
large separations is similar to that of the PB theory, excepétaple states, and therefore, hysteresis may occur as the two
with a renormalized or effective surface charged density. Ingrfaces are pushing in and pulling out again. Indeed, there is
deed, it is known experimentally that in order to fit experi- some experimental support for this behavior for multivalent
mental data to the PB theory, it is necessary to use an effe¢punterions in similar systenfig1]. It is important to empha-
tive surface charge, which is always lower than the actuakjze that this interesting behavior is not included in the
surface charge densifyl]. Therefore, this counterion con- mean-field PB theory. Note also that this first-order binding
densation picture provides a possible scenario in which thigansition can only take place at short distances. This is be-
phenomenon can be accounted for theoretically, without incausedo(g,a) generally increases with increasimg and
voking charge regulation mechanism. eventually wheng is nearg..(6), the condensation occurs
However, for6< 6 the behavior of the order parameter  ithin the repulsive regime and the binding transition be-
and the total pressure of the system is qualitatively differengomes continuous. Thus, direct experimental observation of
(see Fig. 4 We find that there is a range in the coupling the first-order binding transition may prove subtle.
constantg..(#)/2<g<g.(#6), in which the order parameter  Finally, Forg>g..(#) and §< 6, , the condensation again
displays a finite jump at a particular separatiyfg, ¢), and  pecomes continuous. This is because the first-order phase
the counterion condensation is first order as a function of thgransition has already occurred at infinite separation, in

separationd. Here, g..(#) denotes the coupling constant at which r~1. In this regime, the length scale at which the
which the first-order counterion occurs at infinite separation,

i.e., an isolated charged plateee Sec. Il and Ref.14]). 5 . : : . :

Thus, in the limitg—g..(6), we must havedy(g, ) —,

since the system is composed of two isolated charged plates. I ,-"i

However, we havely(g, 8)—0 asg—g..(6)/2, because this 0 f=rmmmmmmnes b kbt 7]

limit corresponds to a single charged plate with twice of the | metastable | transition

surface charge density, i.er=2en,. This striking behavior g 5L \ . ]

of the order parameter has interesting implications for the I i

interaction for the system. Indeed, for sufficiently short dis- .,.-'

tances, we find that the first-order counterion condensation 10 r.-" g

spontaneously can take the system from the repulsive to the 1

attractive regime, resulting in a first-order binding transition. sk 13 ]

This is illustrated in Fig. 6 for the case of trivalent counteri- 9=1.

ons at room temperatue=0.01 atg=1.3, corresponding to 8=0.01

a surface density of one charge per70 nnt. (For triva- 20 S ' S
0 0.05 0.1 015 02 025 03

lent counterions, the first-order counterion condensation oc-
curs in the range of 09g<1.8 [14].) The corresponding
pressure profile is plotted in Fig. 7, which shows that the FIG. 7. The pressure profile for the first-order binding transition.

d/A
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05 . , T T ] counterion distribution is strongly modified if discreteness is

] taken into account. In particular, the counterions tend to be
more “localized” near the charged surface. It remains to be
seen how this affects the condensation picture presented in

0

05 this paper; it is possible that this effect may smooth out the
g Al first-order transition. However, we believe that a rapid varia-
tion of the condensation reflecting the first-order transition
A5 should remain.
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attraction starts to overcome the repulsion can be quite large
(see Fig. 8 In the case of divalent counterions, we find that
the onset of attraction occursat 100A. Clearly, the higher

the surface charge @; the longer is the range of the attrac-  |n this appendix, we present in detail the derivation of the

tion; therefore, together with the mechanism of fluctuation-pressure arising from fluctuations. The derivative of the fluc-

driven counterion condensation, the correlated attraction mayation free energy with respect to the distadds given in

explain the long-ranged attractions observed experimentallyzq. (27),

Moreover, we note that there is a qualitative change in the

shape of the pressure: the repulsive barrier disappears. This IBAF 1

may mark an onset of the aggregation and has important -, = Tf d*xG3p(X,X)

experimental manifestations on the phase behavior of the ad B

macroions. J
In summary, by incorporating the condensation driven by X—

fluctuations, we show that the net pressure between two od

similarly charged surfaces becomes negative, hence attrac-

. Where

tions, at a length scale much longer than the Gouy-

Chapmann length. We also predict several distinct behaviors k2e~*@D=24%sed(az)O(2)

of the system, depending on the valence of the counterions,

that deviates significantly from the classical theory of the +2(|z| —dr2+ g)*Z(T)(Z),

double-layer interactions. While our calculation is based on

the Gaussian fluctuation theory which may break down for as defined in Eq(26), é=\g/(1+b?), andGzp(x,x’) is the

very high surface charge density, a complementary treatmem@reen’s function defined as the inverse operatoK gf and

is considered by Shklovsk{i6] in this regime, where the satisfies Eq(28), which in Fourier space can be written as
condensed counterions are assumed to form a 2D strongly

APPENDIX: DERIVATION OF THE
FLUCTUATION PRESSURE

2
EZ S(z=d/2)+ k2 ¢@|, (A1)

correlated liquid. That theory predicts a strongly reduced sur- 92 ) 2 (2 ,
face charge and exponentially large renormalized Gouy- |~ 52 Td° EZ 8(z+d/2)+ ke ¥ 1Gsp(2,2;0)
Chapmann length, qualitatively similar to our results that for -

high surface charge most of the counterions are condensed. =¢gé(z—2').

Moreover, it was shown in Refl20] that by perturbing
around the low temperature Wigner crystal ground state, th&he Green’s function can be solved by standard technique
long-ranged attraction persists to be operative, independeb84]; first, we note that the homogeneous solutions are given
of the ground state. Thus, at large distances, we believe th&y
our picture should capture the interaction of two similarly
charged surfaces in the regime between where PB theory is h<(z,q)=e*%
. ) s(z;g)=e

appropriate(low surface chargeand the strong coupling -
limit [6,32].

However, there remain fundamental issues to be adfor [z|<d/2 and
dressed in the future. For example, in real systems, the
charged surfaces are often characterized by discrete surface h>(z.q)=etq|z|
charge distribution. In recent studig33], it is shown that the =

: (A2)

1+ tan(az)
+ —1al Z
q o

1
175

Tal—dzrg MY
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for |z|>d/2. We have two cases to consider,|<d/2 and The coefficientsA(z') - - -F(z') are determined by the fol-
|z’|>d/2. In the former case, we split the space into fourlowing boundary conditions:
regions: z<—d/2, —dl2<z<Zz', z'<z<d/2, andz>d/2

and write Gap(=d/22';q)=Gap(=d/22';q), (A8)
G_(z,2";0)=A(z')h~(z,q) for z<—d/2, (A4) ) )
8ZG3D(Z,Z ;q)|z=id/2_ﬂzG3D(ZaZ ;q)lz:td/2
G-(z,2';0)=B(z')hT(z;q)+C(z')h=(zq) for =(2I\p)G3p(£di22';q), (A9)
—d/i2<z<z’, (A5)
Gap(2',2';9)=G3p(2',2';0), (A10)
G-(z,2';0)=D(z')h3(z;9) +E(z')hZ(zq) for
7' <z<d/2, (AB) 3,G3(2,2";9)| = — 3,G3p(2,2";9) | ,= = {5 .
(A1)
G.(z,2';q)=F(z')hZ(zq) for z>—d/2. (A7) After some algebra, we obtain specifically

g h3(2)+M(q)h™(2')

E(z)=~— , A12
) 20 (1+a?/9*)[ 1~ M?(q)] (A12)
D(z")=M(q)E(z"), (A13)
e 99 (1+b?)%+ y(1—b2—grg) (1 +b%+gAR)]
M(@)=—5 - . , (A14)
(1+b%)%(1+grg) + (y+arg) (1 +b+0Ag)(1—b "+ gAR)
where y=\g/\p=27/(1— 7). Therefore, the Green’s functidB;p(x,X) for |z|<d/2 is explicitly given by
d’q 5| 1+ M?q) a® seé(az) 1+ M?(q)

Gan(X,X =f — - — Al5
AN P 2q{ - MAa) & 1+ a?iq? 1- MZQ) (AL
2M(q) |[1+a?/g?tarf(az)]cosh2qz) + 2a/q tan az)sinh(2¢2) (AL6)

1-M?23(q) 1+ a?/q? '

Note that the Green’s function is symmetric with respectzt@as expected from the symmetry of the problem. Similar
calculation can be done for the cdgé=d/2 and the result is

_ d’q g | 1-L(gye A 921+ q(|z|—d2+§)1?
GZn(X,X) = —{1- , A17
3p(x:X) f(277)2 2q[ (2 —di2+ &)? (ALD)
where £(q) is given by
e~ 99G(d/2) h7(d/2)e 9
£(q)= - A18
(@ [h”(d/2)]? h~(d/2) (A18)
and
h3(d/2 h=(d/2)][h=(d/2 h<(d/2
g(d/z)z[ $(d/2) + M(q)h=(d/2) J[h=(d/2) + M(q)hZ( )]=2—ngD[d/2,d/2;q]. (A19)

(1+ a?g?)[1-M2(q)] 4
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Returning to the expression in EGAL), we note that it can where we have used the fact that the integrand is symmetric
be separated into three parts, with respect toz. Note also that there should also be two
5 terms containing?® (z)/dd and 90 (z)/dd in dBAFglad
10BAFN 2 J' d°q xde3 (2.2:q) and 9BAFc/dd, respectively; however, they cancel identi-
A ad tehp) (2m)2Jo p(%2.4 cally when they are added together.
Let us first discuss EQ.(A20); using the identity
Xiﬁ(z—dIZ), (A20) (9l9d) 8(z—dI2)=— 3 (9l dz) 5(z—d/2), and integrating by
od part, it can be transformed into

10BAFs 1 ( d’q (= 2 .
A ad Bw-f zf d2Gsp(2,2:0)0(2) L1opaF,_ 1 f ¢°q iGsp(zzia)|
J B (2m)°Jo A ad €ehp) (2m)2 9z 2=di2*
; (A23)
X%[Zazse@(az)], (A21)

Using the boundary condition in E¢A9),

3,G3p(2,Z,0) | = a2+ = 9,G3p(2,2, Q)| 7= ar2-

1 0BAF _ 1J' d?q
+(2/\p)G3p(di2,d/2;q),

L - @T)Jo d2Gyp(2,2:0)0(2)

, (A22)  and the explicit expression for the Green’s function given in
Eqg. (A16), we obtain after some algebra

W2
ad| (z—d/2+ ¢)?

1BAFA 1 J d’q (g 2{ - M?(q) dAp(1+b?)2(b%+ghg+QAp)
(

A ad  €ehp) (2m)2 29 Np|1-MZ(q) (1+b?) %+ y(1-b>—ghg)(1+bZ+qAg)

d\p b%(1+b?)? ] fdzq qM3(q)
T T M) (10D ahR) (7 + QN (L F D2 A ) (1 D2 H ahg)| (2m)2 1-M*(q)’

(A24)

The next term, Eq(A21), can be shown to be integrating by parts several times, one can show that the
integral @ can be expressed in closed form with the help of
the relation » tan(ad/2)=1—b?, by

19BAFs 8 (1+b%b d?q
A ad (N3 d ) J(ZW)Z
TSR LA Cr I P RPES
ad/2 16b(q)\R)2 )\R
xf dXGsp(X,X;q)seé x(1+x tanx). 2
0 xoosﬁqd)—%{%r )\i(1+b2)
(A25) (d\R) R
_h2)2
In evaluating thex integral, we note that there is a nontrivial X coshqd) — Mcoshqd)jL bCLqud)
integral which involves the last term inside the bracket of 4(qhr) CINY
Green’s function in Eq(A16); it reads (1—b?)(1+b?) d
—[24— —(1+b?)
8b(gAR) AR

o= fadxseéx(1+xtanx){[1+(2/k)2tar?x] 5
0

: b(1+b%)
><5|n}"(qd)+ﬁsml"(qd).
X coshkx+ 4/k tanx sinhkx}, (aAR)
wherek=2q/a andd=«d/2. Note that none of these inte- Substituting this result back into EGA25) and rearranging
grals can be expressed in terms of elementary functions, biérms, we obtain
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1 9BAFg  (1+b»?( d’q (g[G(d/2) }
A T il f(zw)Zﬁ 5 T Jdf2)
. 1 4b2(1+b2) f d?q g
2 22
€BNR (1+b2 (2m)% 29
g( 2) 2(1-b? J(d/2)

+J(d/2)+

(A\R)*(1+a?/g?)

2 2M(q)sinh(qd)
AR (14 2P [1- MAQ]]

where 7(d/2) is defined by the expression

1+M?Aq)

2M(qg)coshqd
2[1-M3q) '

J(dr2)= SYET)

(A26)

Finally, we turn to the last term in EGA1), Eq. (A22). With
the help of the integral

Fd,GSD(z,z;q) _ g (1+Db%)?
w2 (z—d2+£)3 20 2)\}

1
—Q(d/2)+ 5= —E(OI)
(A27)

Eqg. (A22) can be written as

PHYSICAL REVIEW E 66, 041501 (2002

1(9,6’A]-"C_(1+b2)2f d?q €B[Q(d/2)+1—£(q)}
A ad e\E ) (2m)2 29 2
- 4b2(1+b2) f d’q (g
(2m)? 29

(1+b2)

X[ G(d/i2)+1—-L(q) , (A28)

2

which can be combined with the expression #@A F5/ad
above[note thatG(d/2) cancels niceljto yield

IBAFg _

1 (1+b%)? g 1
A

+
€B)\2R 47T)\R 8 €B)\%

4b%(1+b%) (g

d
2+ —(1+b?)
AR

(A29)

where we have defined the following dimensionless inte-
grals:

; =f d2q 4wa[ 2(1—b2) J(d/2)
> ) 2m? 29 [(qrp)¥(1+a?g?d)

2 2M(qg)sinh(qd)
ANR (1+ az/qz)[l—Mz(Q)]l’ A0
[ d’g 4mig[1
I3=fw 2q 2 Zﬁ(Q) ﬂd/Z) (A31)

With some straightforward but tedious algebra, they can be
cast into a more explicit form,

2x[(1—b%+x)%+ y(1+b%+x)(1—b2+x) —b?(4b%+x?)]

Iz[d/)\R]=f0 dx

(402 +x3)[ 1= M2X)[(1+bH)2(1+x)+ (y+X)(1+b%+x)(1—b%+x)]

—fwd 2XM2(x){(1— 02— x)[(1—b2+x) + y(1+ b2+ x)]— (b%+x)(4b?+ x?)}

and

2
0 (4b2+33)[ 1= MZ()J[(1+b%)+ (1= b?=x)(1+b%+x)] e
~ 2yxb?
Z3[d/Ng]=— f 1= M2 (L4 DD2(14X) + (y+X)(1+ b2+ x)(1—bZ+X)]
2 2
f 2X M 2(X)[x+ y(b?+X)] (A33)

1= MZ0)I[(1+ 023+ y(1-b?—x)(1+ b2+ x)]’
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where we have made a change of the integration variablg\z. Now, observe that the first term in EQA29) cancels
precisely the first term in EqA24). Therefore, combining the two expressions, we obtain(E®). for the fluctuation pressure.
Similarly, Z,[ d/\g] defined in Eq(36) can be expressed as

d’q 4m\g ANR[(1+ 022+ 29(1—b%+grR)]

2m)? 20 (1+b?2(1+qgrg)+ (y+grr)(1+b%+gAg)(1—b?+gAR)

amma=—J(

_f d?q 4m\g QARM A(Q) (1+b%)%+2y(1-b2%+qg\g)
(2m)? 20 1-M2(q) [(1+b*)*(1+arp)+(y+aNr)(1+D*+aNR)(1—b*+ONR)
(1+b?)2+2gNg(1—b?) +2(gAg) >+ 2y(1—b%—qg\g)

T (1) (I-b—qrp(1FbP hg) ' (A34)

Note that the first term in this expression is logarithmically divergent.

[1] J.N. Israelachvili,Intermolecular and Surface Force@\ca- [17] Phil Attard, Roland Kjellander, and D. John Mitchell, Chem.

demic Press, San Diego, 199%V.M. Gelbart, R.F. Bruinsma, Phys. Lett.139 219(1987); P. Attard, D.J. Mitchell, and B.W.
P.A. Pincus, and V.A. Parsegian, Phys. To88(9), 38 (2000. Ninham, J. Chem. Phys38, 4987 (1988; R. Podgornik, J.
[2] I. Rouzina and V.A. Bloomfield, J. Phys. Cherh00, 9977 Phys. A23, 275(1990.

(1996; J. Arenzon, J.F. Stilck, and Y. Levin, Eur. Phys. J. B [18] D.B. Lukatsky and S.A. Safran, Phys. Rev6€ 5848(1999.
12, 79 (1999; B.I. Shklovskii, Phys. Rev. B0, 5802(1999.  [19] A. Gopinathan, T. Zhou, S.N. Coppersmith, L.P. Kadanoff, and

[3] B.-Y Ha and A.J. Liu, Phys. Rev. Let79, 1289(1997; 81, D.G. Grier, Europhys. Let67, 451(2002.

1011(1998; Phys. Rev. E58, 6281(1998: 60, 803 (1999. [20] A.W.C. Lau, Dov Levine, and P. Pincus, Phy;. Rev. L84,
[4] P. Pincus and S.A. Safran, Europhys. Ldg, 103 (1998. 4116 (2000; AW.C. Lau, P. Pincus, Dov Levine, and Herb
[5] R. Netz and H. Orland, Eur. Phys. J.1£203 (2000). Fertig, Phys. Rev. 63, 051604(200)).

[21] B.-Y Ha, Phys. Rev. B4, 031507(2002.
[22] T.M. Squires and M.P. Brenner, Phys. Rev. L& 4976
(2000.

[6] V.. Perel and B.l. Shklovskii, Physica 274, 446(1999; T.T.
Nguyen, A.Yu. Grosberg, and B.l. Shklovskii, Phys. Rev. Lett.

, 25' K1_5ﬁ8(§0008' arcelia. and 1P, Ouirk 3. Colloid Interface 23 M- Tamashiro and P. Pincus, Phys. Re\6(E 6549(1999.
[7] R. Kjellander, S. Marcelja, and J.P. Quirk, J. Colloid Inter ace[24] Ning Ma, S.M. Girvin, and R. Rajaramann, Phys. Rev6 &

Sci. 126, 194(1988; H. Wennerstrom, A. Khan, and B. Lind- 021402(2001).

man, Adv. Colloid Interface ScB4, 433(1991; V.A. Bloom-  155) 5 A Safran, Statistical Thermodynamics of Surfaces, Inter-

field, Biopolymers31, 1471(199J); R. Podgornik, D. Rau, and faces, and Membrandaddison-Wesley, Reading, MA, 1994
V.A. Parsegian, Biophys. &6, 962 (1994. [26] Alexander L. Fetter, Phys. Rev. B), 3739(1974; H. Totsuji,
[8] Patrick Kekicheff and Olivier Spalla, PhyS Rev. Léth, 1851 J. Phys Soc. ‘_]plz'_oy 857(1976' E.S. Ve|azquez and L. B|um’
(1995. Physica A244, 453 (1997; A.W.C. Lau and P. Pincus, Phys.
[9] A.E. Larsen and D.G. Grier, Natufeondon 385, 230(1997. Rev. Lett.81, 1338(1998.

[10] L. Guldbrand, B. Josson, H. Wennerstno, and P. Linse, J. [27] L.D. Landau and E.M. LifshitzStatistical Physigs3rd ed.
Chem. Phys80, 2221(1984). (Pergamon, New York, 1980rev. and enl. by E.M. Lifshitz

[11] M.J. Stevens and K. Kremer, J. Chem. PHy@3 1669(1995); and L. P. Pitaevskii.
N. Grinbech-Jensen, R.J. Mashl, R.F. Bruinsma, and W.M[28] Note that this is the case where the counterions can be
Gelbart, Phys. Rev. Lett78, 2477 (1997; N. Grétnbech- squeezed out of the surfaces, where the density at the midplane
Jensen, K.M. Beardmore, and P. Pincus, Physic264 74 for d<\, po(0)~1/(Ig\?), instead ofpg(0)~ 1/(Ighd) where
(1998. counterions are confined between two charged hard walls.

[12] R. Messina, C. Holm, and K. Kremer, Phys. Rev. L8§,. 872 [29] J. Hubbard, Phys. Rev. Le®, 77 (1959; R.L. Stratonovitch,
(2000; Europhys. Lett51, 461 (2000. Dokl. Akad. Nauk. UzSSR15 1907 (1957.

[13] J.C. Neu, Phys. Rev. Le®2, 1072(1999; J.E. Sader and D.Y. [30] S. Samuel, Phys. Rev. D8, 1916(1978; see also Ref5].
Chan, J. Colloid Interface Sc213 268 (1999. [31] Uri Raviv (private communicationsunpublished.

[14] AW.C. Lau, D.B. Lukatsky, P. Pincus, and S.A. Safran, Phys.[32] Andre G. Moreira, and R. Netz, Phys. Rev. Le8, 078301
Rev. E65, 051502(2002. (20012.

[15] R. Kjellander and S. Marcelja, Chem. Phys. Letfi2, 49 [33] D.B. Lukatsky, S.A. Safran, AW.C. Lau, and P. Pincus, Euro-
(1984); J. Phys. Chem90, 1230(1986. phys. Lett.58, 785 (2002; Andre G. Moreira and R. Netz,

[16] M.J. Stevens and M.O. Robbins, Europhys. Let?, 81 ibid. 57, 911(2002.
(1990; A. Diehl, M.N. Tamashiro, M.C. Barbosa, and Y. [34] G. Arfken, Mathematical Methods for Physicisté\cademic
Levin, Physica A274, 433(1999. Press, San Diego, 1996

041501-14



